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Fig. 1: Robot planner using a conformal controller on the Stanford Drone Dataset [1]. The future trajectories of humans are
predicted online by a machine learning algorithm (not visualized). The robot planner finds an optimal spline through the
scene and is penalized for being close to humans. This penalty is proportional to a conformal control variable, λt, which is
adjusted online by the conformal controller so the average distance from a human is no less than 2 meters. The orange, red,
and blue curves are the robot trajectory with different planners: the conformal controller, an aggressive planner with λ = 0
(i.e., no reward for avoiding humans), and a conservative planner with a large negative value of λ (i.e., a large reward for
avoiding humans). The darkness of the lines indicates the passage of time. Illustrative pedestrian trajectories are plotted as
arrows; only the yellow pedestrians affect the spline planner. Details in Section IV-A and videos on project website.

Abstract— We introduce Conformal Decision Theory, a frame-
work for producing safe autonomous decisions despite imperfect
machine learning predictions. Examples of such decisions are
ubiquitous, from robot planning algorithms that rely on pedes-
trian predictions, to calibrating autonomous manufacturing to
be high throughput but low error, to the choice of trusting
a nominal policy versus switching to a safe backup policy at
run-time. The decisions produced by our algorithms are safe in
the sense that they come with provable statistical guarantees of
having low risk without any assumptions on the world model
whatsoever; the observations need not be I.I.D. and can even
be adversarial. The theory extends results from conformal
prediction to calibrate decisions directly, without requiring
the construction of prediction sets. Experiments demonstrate
the utility of our approach in robot motion planning around
humans, automated stock trading, and robot manufacturing.

I. INTRODUCTION

Autonomous systems increasingly rely on complex learned
models to make decisions at scale. Self-driving cars rely on
deep neural networks [2]–[5] to plan around nearby pedes-
trians, robotic manipulators leverage learned grasp models
[6] to plan high throughput pick-and-place maneuvers in
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factories, and AI-enabled stock trading agents optimize the
financial future of investors [7]. However, ensuring that
these decision-makers make good decisions despite imperfect
predictions remains an open challenge.

One common path forward is to calculate the uncertainty
in the predictions independently of their downstream effect
on the decision [8]–[12]. For example, one can use conformal
prediction [13]–[18] to form uncertainty sets that cover the
ground truth outcomes of all predictions uniformly. Then,
the robot can pick any decision that is safe with respect
to these sets. This is statistically guaranteed to result in
safe autonomous behavior, without any assumption on the
underlying distribution or model. This strategy has been used
to provide safety assurances in robot navigation [19]–[21],
early warning systems (e.g., collision alerts) [22], out-of-
distribution detection [23], [24], probabilistic pose estimation
[25], and for large language models [26]. However, this
approach decouples prediction uncertainty from decision-
making. What if we could solve the problem all-at-once,
directly control decision-making risk, and bypass the need
to construct prediction sets entirely?

This work presents Conformal Decision Theory, a new
theoretical and algorithmic framework that unifies predictive
uncertainty and safe decision-making. Our key idea is

instead of calibrating prediction sets for coverage,
we directly calibrate decisions for low risk.

https://conformal-decision.github.io


Our main algorithmic innovation is a class of algorithms
called conformal controllers. A conformal controller starts
with a conformal control variable, λt, which determines the
decision-maker’s conservatism or aggressiveness. Then, it
dynamically adjusts λt to balance risk and performance in
such a way that guarantees a low risk. The main practical
benefit of this approach is its emergent ability to ignore
irrelevant uncertainty, only accounting for that which affects
decisions. This can be much less conservative than the
prediction-set strategy. For example, in Figure 1, the planner
only considers humans that pose a collision risk.

The contributions of this paper are threefold:

● We introduce Conformal Decision Theory, the idea
of directly calibrating decisions with conformal con-
trollers. This extends the line of work in online adver-
sarial conformal prediction [15], [18], [27], [28] to the
decision-making setting. To our knowledge, all previous
conformal works calibrate predictions, not decisions.

● We prove finite-time risk bounds for conformal con-
trollers. Even when applied to prediction sets, these
results are stronger than any previously known results
for online adversarial conformal prediction.

● We show the utility of the framework in three simulation
examples of Conformal Decision Theory applied to
robot navigation in the Stanford Drone Dataset [1], a
stock trading simulation, and a robot manufacturing
example.

The main potential impact of this work is to broaden the
scope of conformal prediction. Our methods are more ap-
propriate for disciplines that focus on decision-making, such
as controls, reinforcement learning, and operations research
domains. In these disciplines, algorithms are ultimately eval-
uated by the decisions, not the predictions, that they make.
Furthermore, there are many settings where it does not
make sense to construct prediction sets, and our technique
would provide a totally new distribution-free outlook for such
problems (see, e.g., Section IV-B).

II. CONFORMAL DECISION THEORY

Conformal Decision Theory (CDT) is an approach for cal-
ibrating an agent’s decisions to achieve statistical guarantees
on the realized average loss of those decisions. Consider a
decision-making agent whose input space is X and action
space is U . In our running example of robot navigation,
xt ∈ X captures the current state of the robot, the current
scene information (e.g., environment geometry), and the
agent information (e.g., pedestrian predictions) while ut ∈ U
is the action that the ego vehicle plans at the current time
t. At time t, the agent has access to a family of decision
functions

Dt ∶= {Dλ
t ∶ X → U , λ ∈ R} (1)

parameterized by λ, which we call a conformal control
variable. One should think of λ as indexing the decisions
from least to most conservative. In Figure 1, Dt is the set of
dynamically feasible splines at time t, λ is the coefficient of

the reward term for avoiding humans, and Dλ
t is the spline

maximizing the total reward given λ.
Assessing the quality of an agent’s decision depends on

a space of targets Y . Importantly, the realizations of these
targets are unknown at the time of the decision; the agent only
observes them at deployment time, after decisions are made,
and in an online fashion. For example, the robot in Figure 1
does not know the true future state of nearby pedestrians; at
any current time t, it only knows the (potentially erroneous)
pedestrian predictions. In this example, Y is the space of
pedestrian states (e.g., 2D positions) and yt ∈ Y is the true
state where the pedestrian moves to at time t.

Mathematically, the quality of the decision-making is
quantified by a loss function L ∶ U × Y → [0,1] 1. Often,
the loss is more likely to be large when aggressive decisions
are taken — i.e., when λ is large. For example, L may be the
distance from the planned spline Dλ

t to the nearest human yt.
Aggressive decisions can be unsafe, but taking λ too small
yields conservative and under-performing decisions.

We seek an algorithm for adapting λt (and thus the
corresponding decision Dλ

t ) at each time step such that the
average loss is controlled in hindsight for any realization
of an input-target sequence {(xt, yt)}Tt=1. This is commonly
known as the adversarial sequence model [15], [29]. In this
setting, our goal is to set λ1∶T to achieve a long-term risk
bound:

find λ1∶T s.t. R̂T (D, λ1∶T ) ≤ ε +
C

T
, (2)

where ε is a pre-defined risk level in [0,1], C is a (small)
constant, and

R̂T (D1∶T , λ1∶T ) ∶=
1

T

T

∑
t=1
L(Dλt

t (xt), yt) and R̂0 = 0.
(3)

The bound in (2) can be trivially extended to

R̂T (D, λ1∶T ) ≤ ε +
C ⋅ h(T )

T
(4)

where h(T ) is any sub-linear function, i.e one where
h(T )/T → 0 as T →∞.

III. THEORY & CONFORMAL CONTROLLER ALGORITHM

In this section, we prove the core theoretical results behind
Conformal Decision Theory. Specifically, we show that any
sequence of families of decision functions D1∶T that are
eventually safe can be calibrated online to achieve bounded
long-term risk. We then introduce an algorithm called CON-
FORMALCONTROLLER which solves Equation (2) under the
assumption of eventual safety.

Definition 1 (Eventually Safe). In the setting above, we say
that D1∶T is eventually safe if ∃ εsafe ∈ [0,1], λsafe ∈ R and
a time horizon K > 0 such that uniformly over all sequences

1The framework works for any bounded loss, but we assume the loss to
be in [0,1] for simplicity.



λ1∶K and {(x1, y1), . . . , (xk, yk)} ∈ X ×Y ,

{∀k ∈ [K], λk ≤ λsafe}

Ô⇒ 1

K

K

∑
k=1
L (Dλk

k (xk), yk) ≤ εsafe .
(5)

Intuitively, this condition says that there exists a safe value
λsafe such that if the conformal control variable lands below
that value, it will incur a low risk εsafe after no more than
K time steps. For example, even the most conservative robot
planner may not be able to change its trajectory fast enough
in a single time-step, but it could possibly do so in K time
steps. Note that this is a strictly weaker assumption than
that used for the proofs in other works, such as [15], [28],
[30], which require K = 1. Conformal controllers are simple
yet efficient algorithms that solves the Conformal Decision
Theory problem stated in Equation (2). An example is below.

Theorem 1 (Conformal Controller). In the above setting,
consider the following update rule for λ:

λt+1 = λt + η (ε − ℓt) , (6)

where η > 0. If λ1 ≥ λsafe − η and D1∶T satisfies Definition 1
for a given K ≥ 1 and εsafe ≤ ε, then for any realization of
the data, ∀t ∈ [T ] the empirical risk is bounded:

R̂t(λ1∶t) ≤ ε +
(λ1 − λsafe)/η +K

t
(7)

The update in (6) resembles ACI [15] and is a hybrid
between the RollingRC update [18], and the P-controller
update [28]. The difference is that the update is applied to
λ and not the conformal quantile or quantile level.

Proof of Theorem 1. By the definition of the update rule,

λt = λ1 + η
t

∑
s=1
(ε − ℓs). (8)

Dividing both sides by −ηT yields

R̂t(λ1∶t) =
1

t

t

∑
s=1

ℓs = ε +
λ1 − λt

ηt

To conclude, we just need to show that λt ≥ O(K). That’s
exactly what is proved in the following Lemma 1.1.

Lemma 1.1. For the sequence in Equation 6, with probabil-
ity one, we have that ∀t ∈ [T ] the parameter λt is bounded
below by λt ≥ λsafe −Kη.

Proof. First note that the maximal change in the parameter
is supt∈[T ] ∣λt+1 − λt∣ < η because ℓt ∈ [0,1] and ε ∈ [0,1].
We will then proceed by contradiction: Assume that with
non-zero probability, infu∈[T ] λu < λsafe −Kη. Denote t =
argminu∈[T ]{u,λu < λsafe − Kη} in other words t is the
first instant when the parameter goes below that lower bound.
Because the max difference between successive steps is η,
we can easily prove recursively that ∀k ∈ {0, . . . ,K}, λt−k <
λsafe − (K − k)η. Note that, from those inequalities, we can

deduce that t > K since λ1 ≥ λsafe − η. by recursively
applying the update rule λt = λt−K +Kη(ε − 1

K ∑
K
k=1 ℓt−k),

(∀k ∈ {0, . . . ,K − 1}, λt−k < λsafe)

Ô⇒ 1

K

K

∑
k=1

ℓt−k ≤ εsafe

Ô⇒ λt = λt−K +Kη (ε − 1

K

K

∑
k=1

ℓt−k) ≥ λt−K +Kη(ε − εsafe)

Ô⇒ λt ≥ λt−K

Since t is the first ever timestep to go below λsafe−Kη, this
is contradictory.

IV. EXPERIMENTS

We demonstrate Conformal Decision Theory in three au-
tonomous decision-making domains, each of which exhibit a
different way that a conformal controller can be instantiated.
First, we consider a robot navigation around humans example
in the Stanford Drone Dataset [1] where CDT tunes the
robot’s reward function online to be safe but efficient. Next,
we model a manufacturing setting where CDT directly cali-
brates the speed of the conveyor belt under a robot to achieve
successful but high-throughput robot grasps. Finally, we
study an automated high-frequency trading example where
CDT must optimize the buying and selling of stocks.

A. Robot Navigation in Stanford Drone Dataset

Robot navigation around people must balance safety (i.e.,
not colliding with humans) and efficiency (i.e., robot making
progress towards goal). To ensure that the risk of collision
is low while still making progress to the goal, the robot
will constantly calibrate its cost function at run-time using a
conformal controller.
Decision Function & Parameterization. The robot plans
via model predictive control and at each timestep fits a
minimum-cost spline subject to the robot’s dynamics con-
straints, which is a non-linear Dubins car [31]. Let g ∶=
[gx, gy] ∈ R2 be the robot’s goal location. Let t be the current
time, H < T to be the planning horizon, and ut∶t+H ∈ RH×3

be a spline consisting of the robot’s planar position and
orientation. The robot also gets as input the current set of
short-horizon predictions of each human’s state, xt∶t+H ∈ Pt,
generated by an autoregressive predictive model [32]. Note,
that this set Pt can include predictions for multiple humans
in the scene (as shown in Figure 1). The robot’s planning
objective is

J(ut∶t+H ;Pt, λ) ∶=
t+H

∑
τ=t
∥upos

τ − g∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Goal distance

+λ ⋅ inf
xτ ∈Pt

∥upos
τ − xτ∥22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Human avoidance

,

(9)
where the notation upos

τ ∈ R2 indicates the xy-positional
entries of the robot’s state at time τ . Note that the conformal
control variable λ scales the cost of staying far away from
predicted human states: if λ = 0 the the robot only cares
about goal reaching; if λ > 0 then the robot is increasingly
penalized for planning to intersect with predicted human



TABLE I: Stanford Drone Dataset: Quantitative Results. Results on the nexus 4 scenario from SDD [1]. Robot’s goal
is to cross the nexus while avoiding pedestrians. Safety was violated if the robot collided with a human. At all learning
rates η, the conformal controller is more efficient at navigation than ACI in terms of time. It remains safe so long as the
learning rate is set high enough so that the robot planner can quickly adapt to nearby humans; when the learning rate is set
too low, (near zero), proximity to humans is effectively not penalized, leading to collisions.

Metrics
Method η success time (s) safe min dist (m) avg dist (m) 5% dist (m) 10% dist (m) 25% dist (m) 50% dist (m)
Aggressive n/a ✓ 8.567 ✗ 0.1595 4.058 1.253 1.546 2.495 4.021

ACI
(α = 0.01)

0 ✓ 27.17 ✗ 0.07612 5.201 1.842 2.415 3.9 5.614
0.01 ✓ 26.67 ✗ 0.8026 4.575 2.261 3.014 3.507 4.574
0.1 ✓ 24.73 ✗ 0.7906 4.771 2.284 2.825 3.561 4.78

Conformal
Controller
(ε = 2m)

50 ✓ 20.03 ✗ 0.6122 3.299 0.8688 1.426 2.022 2.978
100 ✓ 17.4 ✓ 1.142 3.794 1.678 1.811 2.378 3.262
500 ✓ 17.33 ✓ 1.116 3.989 1.69 1.812 2.452 3.795
1000 ✓ 16.17 ✓ 1.265 3.599 1.698 1.81 2.282 3.303

Conservative n/a ✗ ∞ ✓ 2.268 6.291 3.801 3.982 4.982 5.993

Fig. 3: Stanford Drone Dataset: Qualitative Results. Visualization of interaction over time (left to right). (top) With our
conformal controller (CC), the robot always makes progress towards its goal while remaining safe, even when blocked
by crowds of people. (bottom) The ACI baseline calibrates the prediction sets. As soon as a mis-prediction happens, ACI
expands the prediction sets to obtain coverage, but this frequently blocks the robot from moving anywhere (see t = 10s)
even though the mis-predictions happened for a pedestrian very far away that wasn’t interfering with the robot’s plan.

trajectories. The decision function outputs the minimum-cost
trajectory for the robot

Dλ
t ∶= arg min

ut∶t+H∈U
J(ut∶t+H ;Pt, λ), (10)

where U is the set of feasible splines (ones that are dy-
namically feasible for the robot and also do not intersect
with environment obstacles). At the next timestep, the robot
re-predicts the human trajectory (i.e., generates Pt+1) and
re-plans the decision Dλ

t+1.
Loss Function. Let Y ⊂ R2 and the targets y1t , . . . , y

M
t ∈ Y

be the actual xy positions of each of the M humans that the
robot observes at time t. The loss function is defined as the
negative distance to the nearest human,

L ∶= − inf
i∈[M]

∥yit − upos
t ∥2, (11)

where upos
t is the robot’s current position. To make it

bounded, we clip the loss to the size of the video.
Metrics. We measure a boolean safe variable indicating if
the robot never collided with a human. We also measure a

boolean success variable if the robot reached the goal loca-
tion by the end of the interaction episode (i.e., length of video
in the SDD). We also measure the time to reach the goal
location and the minimum, mean, and {5%,10%,25%,50%}
quantiles of the distance to the nearest human.

Experimental Setup. All methods are evaluated on inter-
actions from the nexus 4 video in the Stanford Drone
Dataset (SDD) [1]. The risk threshold is ε = 2m (i.e., radius
around human). The robot always starts from the same initial
condition and moves to the same goal. This scenario has
a high density of pedestrians, making the risk-performance
tradeoff for the robot nontrivial. Our approach (CC) adapts
the reward weight λt on the human collision cost based
on Equation 6 so that the decision risk is calibrated. Our
baseline robot planners: conservative which always uses the
safe decision function Dλ=1

t , aggressive which uses Dλ=0
t ,

and ACI [21] which first uses adaptive conformal prediction
to calibrate prediction sets and then plans to avoid these sets.

Results. Quantitative results shown in Table I and qualita-



Fig. 4: Manufacturing Assembly Line Robot: Quantitative Results. (Left) Illustrative example: Robot must adjust the
speed so that it grasps the most items while minimizing grasp failure. (Right) Empirical risk ,R̂T , and average utility (i.e.,
successful grasps), V̂T on 1000 runs. Our method is denoted by (CC). Dashed red line is target risk ε = 0.05.
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Fig. 5: Stanford Drone Dataset. (top) λt (calibrated by CC)
and αt (used by ACI to calibrate prediction sets) over time.
When αt ≤ 0, ACI returns infinite set and the robot stops.
(Bottom) Distance to the nearest human over time. λt is large
when the robot is close to a human, while αt is unrelated.
λt trajectory is shorter because it reaches the goal faster.

tive results in Figure 1. Because the conformal controller
calibrates the robot’s decisions directly, it is substantially (∼
29%) faster at reaching the goal than the ACI algorithm (see
visualization over time in Figure 3). While the aggressive
baseline reaches the goal fastest, it consistently violates
the safety threshold. On the other hand, the conservative
baseline never completes the task, getting stuck far away
from the crowds of pedestrians. The conformal controller
ensures safety so long as the learning rate is fast enough
for the robot planner to quickly adapt to changes in nearby
human behavior (see Figure 5). Note that ACI can result in
collisions in two reasons: 1) the prediction sets do not adapt
fast enough for the spline planner to react and swerve out of
the way of the pedestrian, 2) if the prediction sets become
so large that there is no feasible spline and the robot must
stand in place, the pedestrians sometimes run into the robot.
This issue was independently observed in [21].

B. Manufacturing Assembly Line Robot

Consider a factory assembly line where a robot has to grab
items from a conveyor belt (left, Figure 4). As the speed
increases, the throughput of items increases but so does the
ratio of robot grasp failures. The agent must calibrate the
speed so that the ratio of failures over time stays below ε.
Decision Function & Parameterization. The agent will

directly modify the speed, thus the action ut ∶= λt. Here
we take λt ∈ [0,1].

Risk Function. For a given conveyor belt speed λ, the
robot will attempt to grab n(λ) items, among which d(λ)
are failed grasps. The loss received by the robot will be
L(λ) ∶= d(λ)/n(λ).

Metrics. We measure average utility (i.e., # of successful
grasps), V̂T ∶= 1

T ∑
T
t=1 V (λt), and empirical risk, R̂T (λ1∶T ).

Experimental Setup. To simulate our setting, we assume
that the number of items n(λ) the robot attempts to grab is
drawn as Pois(C ⋅

√
λ). The number of failed grasps condi-

tioned on the total number of items is d(λ)∣n ∼ Bin(n,C ′ ⋅λ).
Importantly, the distributions of n, d, and the parameters
C,C ′ are all unknown to the agent. Our conformal controller
method (CC) adjusts the speed λt based on the update rule
from Equation 6. In addition to the risk function, we also
track a utility function which is the number of successful
grasps V (λ) ∶= n(λ) − d(λ). We compare our method
with two baselines: A bandit algorithm running the upper
confidence bound algorithm (UCB) [33] to maximize the
utility V and another algorithm running the lower confidence
bound algorithm (LCB) to minimize the loss L. We also add
two methods with oracle access to the otherwise unknown
parameters: Oracle-Value selects the best speed to maximize
grasp success λ∗V ∶= argmaxλE[V (λ)] and Oracle-Loss
selects the best speed λ∗L such that E[L(λ∗L)] ∶= ε. The
values selected for the parameters are in Figure 4. We run
all methods for a horizon T = 2000, set C = 10, C ′ = 0.2,
and the target risk is ε = 0.05 (i.e., ≤ 5% failed grasp).

Results. We run the simulation N = 1000 times, and
calculate the average empirical risk and the average number
of successful grasps. In Figure 4, we find that our method
performs as well as the Oracle-Loss, ensuring that the empir-
ical risk of grasps never exceeds ε = 0.05, while still ensuring
high throughput of successfully grasped items. UCB and
LCB both violate the empirical risk threshold: UCB incurs
this risk but achieves higher number of successful grasps,
while LCB is slow to learn its target, resulting in a higher
risk over the time horizon.
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Fig. 6: Stock Trading: Quantitative Results. All results
over 5 year period. The yearly loss threshold ε = 25%.
(left) Despite a poor prediction model of return (negative
correlation), the CC achieves bounded loss at the user’s
threshold (bottom, dashed red line overlaps with orange CC
line) but is not the best at keeping the return the highest.
(right) With a strong prediction model on the return (positive
correlation), the CC is able to achieve high yearly returns
(second only to Greedy) while simultaneously respecting the
loss threshold (which the Greedy violates).

C. Stock Trading Agent

An automated trading agent is trading a stock at high-
frequency (e.g every five minutes). We model the agent as
able to either buy or short-sell the stock, with no trading cost.
When buying the stock at time t, the agent receives return
rt. When short-selling it, the agent receives a return −rt. The
agent must calibrate its trading decisions so the annualized
loss is at or beneath the investor’s loss threshold of ε%.

Decision Function & Parameterization. At every timestep,
t, the agent has access to the past history of returns and it’s
own actions. The agent can use it to construct a confidence
set Ĉλ where λ is the conformal control variable. Given a
predicted set, the agent can decide to either buy if the entire
set is above 0, short-sell if the entire set is below 0, and not
do anything if 0 is in the set:

Dλ
t ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if min(Ĉλ) > 0
−1 if max(Ĉλ) < 0
0 o.w.

(12)

Risk Function. The agent’s action is u ∈ {−1,0,1} which
incurs a loss L(u, r) ∶= −u ⋅ r ⋅ 1{u ⋅ r < 0}, i.e., the agent
suffers a loss equal to the amount of money lost by that
decision. We clip the loss to make it bounded.

Experimental Setup. We simulate stock returns using a geo-
metric Brownian motion. We assume that we observe returns
every hour, so we have n = 252(days) × 7(hours per day)
steps per year

rt ∶= µ∆ + σ
√
∆Zt where ∆ = 1/n (13)

We assume that at t− 1, the agent has access to a prediction
r̂t and we assume that the correlation corr(rt, r̂t) ∶= ρ. The
higher ρ the better the predicted returns r̂t. The predicted
interval is

Ĉλ(r̂t) ∶= [r̂t − σ
√
∆zλ/2, r̂t + σ

√
∆z1−λ/2],

where zλ is the quantile of level λ of the normal distribution.

Metrics. In addition to the loss, we also measure return
V (u, r) ∶= u ⋅ r which for the agent’s action u.

Results. We run N = 100 simulations over 5 years. We set
µ = 0.08, σ = 0.2, which are approximately the historical
values for the S&P 500. We compare our CC method
with: the Buy-and-Hold strategy that simply buys the stock
at each timestep, the Greedy strategy that buys the stock
whenever the prediction is above 0 and short-sells it when
the prediction is below 0 (equivalent to D(λ = 1)), and ACI
that adjusts λ online using the ACI algorithm. We set the
target coverage for ACI at 90% and our annualized loss
threshold to be less than ε = 25% (the threshold per time-step
is therefore ε/n). For the prediction of returns, we simulate
another geometric Brownian motion,

r̂t ∶= µ∆ + σ
√
∆Wt where where corr(Wt, Zt) = ρ.

(14)
The results for the different methods are in Figure 6. We plot
the cumulative return and cumulative loss for all methods and
for two models: ρ = 0.1 (good model) and ρ = −0.05 (bad
model). In both cases, our CC quickly adapts the parameter
to stay below the loss threshold, while having good returns
when the predictive model is good (ρ = 0.1). Greedy ap-
proaches has more extreme returns (negative when the model
is bad, positive when the model is good) with high level of
losses. ACI is highly conservative, resulting in smaller loss,
way below the threshold. By being too conservative, it limits
the potential gain when the predictive model is actually good.
Buy-and-hold also has high cumulative loss as it moves
with the stock, and has a more consistent return, as it is
independent of the model quality.

V. DISCUSSION & CONCLUSION

In this paper, we introduce Conformal Decision Theory,
a new theoretical and algorithmic framework for produc-
ing safe autonomous decisions despite imperfect machine
learning predictions. Our method is described in the online,
adversarial setting, but in other decision-making domains,
you may have batch or offline datasets from which you learn
how to make decisions (e.g., offline RL [34]). Thus, it may
be worth asking how these ideas might apply in the batch
setting. Future work may additionally consider optimizing
the conformal control variable to maximize utility subject to
the constraint of risk control.
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